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Hilbert's Twelfth Problem* 

By Harvey Cohn 

Absact. The Hilbert modular function field over Q(V2) has generators satisfying modular 
equations when the arguments are multiplied by factors of norm two. These equations are 
found by machine use of Fourier series and are further used to show computationally that 
Weber's ring class field theory for rationals has an illustration of Hecke's type for Q(V2). 
This has bearing on Hilbert's twelfth problem, the generation of algebraic fields by 
transcendental functions. 

1. Introduction. The main result of the present computation is an explicit 
modular equation for a field of modular functions of two variables. In one variable, 
the corresponding field is generated by j(z) (see (1.3)) and the classical modular 

equation expresses j(bz) in terms of j(z) by an algebraic equation with remarkably 
large coefficients. Even for b = 2, the result is a numerical curiosity, 

_ (j2(2z) _ j(Z))(j2(z) 
- j(2z)) + 24- 3 3 1j(2z)j(z)(j(2z) + j(z)) 

(1.1) -24 34. 53(j2(z) + j2(2z)) + 28- 7 - 61 - 3731(z)j(2z) 

+28- 37- 56(j(Z) + j(2z)) -212- 39 59 = 0. 

Although such equations can be explained in simpler terms in individual cases (see 
[1], [4]), they are hard to find generally; see [8]. The new result here is for Hilbert 
modular functions over Q(V2) which form a field with two generators X(z, z'), 
Y(z, z') (replacing the classical j(z), see (2.6)). We derive an explicit relation 
(see (4.4)) which determines algebraically X((2 + V2)z, (2 - V2)z') and 

Y((2 + V2)z, (2 - V2)z') from X(z, z'), Y(z, z'). 
The modular equations are of some interest as a precise computation based on a 

rather long Fourier approximation (of 45 terms). The main purpose, however, is to 

illustrate the existence of what may be described as "Weber-Hecke ring class field" 

analogues. We cite Weber's classic result in computational, indeed rational, terms: 

Let f(x, y) be a binary quadratic form over Z of discriminant d < 0. We assume 

the coefficients are relatively prime but d need not be squarefree (or fundamental). 
Let f(x, y) be principal (it represents 1), so f(x, y) = x- d 2/4 for d even and 

f(x, y) = x2 + xy - (d - I)y2/4 for d odd. Then, for a prime p I 2d, 

(1.2) {p = f(x,y) solvable in Z) ( p splits in Q(Vd, j((d + Vd)/2))). 
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The quantityjo = j((d + Vd)/2) is called a "singular modulus" and is incidentally 
an algebraic integer in a field abelian over Q(,Vd). The field Q(-Vd jo) is called a 
"ring class field" over Q(,Vd) in reference to the splitting property and the ring 
Z[(d + Vd)/2]. 

To be more specific, j(z) refers to the function 

oo 3 oo 
(1.3a) j(z) = 1 + 2402 a3(m)q /ql(1 q )24 

for a3(m) the sum of cubes of divisors of m and 

(1.3b) q, = exp 2lTiz, Imz > O. 

The important properties are derived from the relations 

(1.3c) j(z + 1) = (z), j(- 1 /z) = j(z) 
(invariance over the modular group PSL2(Z)). The concept of "splitting" of p is 
rational; it means that the defining equation for any integral element of the field 
will completely factor modulo p. For a normal field of degree 2', in particular, this 
means that t quadratic residues exist modulo p, corresponding to the stages of 
solution by radicals. 

To see how the modular equation is the key to Weber's theory, we consider 
nonfundamental discriminants of type d = b2'do for variable I in (1.2). This situation 
involves the modular equation relating j(bz) and j(z) algebraically. For instance 
(see [1]), for the form 

(1.4) (p =)f(x,y) = X2 + 4 _ 4ty2 

we would need the modular equation for b = 2 to iteratively deducej(2'+ i) from 
j(2'i) (two values of Io). 

What Hecke did, in effect, was to create an analogous theory for primes and 
quadratic forms in real quadratic integers rather than Z, in which representation of 
primes was tantamount to splitting in fields of singular moduli created by Hilbert 
modular functions rather than by j(z). We therefore call it an illustration of a 
"Weber-Hecke" theory to consider for ZIV/21 the form 

(1.5) 7T = 2 + (2 + V2)2tY2 

representing a prime 77 in Q(/ 2) of norm p. We shall then verify by computer that 
such a representation is governed by the splitting of p in a field K, (see (6.2a)) 
involving new singular moduli, now special values of X(z, z'), Y(z, z'). Hecke's 
original theory [3] was limited to cases where t = 0 (fundamental discriminants), 
and, even so, was further limited in its scope. Indeed, the illustration (1.5) still is 
not quite a consequence of a comprehensive generalization of Weber's theorem. 

Hilbert's twelfth problem is a generic classification for the study of objects like 
the singular moduli (more generally, algebraic values likejo taken by transcenden- 
tal functions at algebraic arguments). These objects are within the limits of 
computation! For historical references, we cite [3], [4], [7], and, for a more modem 
viewpoint, [5], [6]. The construction of the Hilbert modular function field here 
follows [2]. The computations were performed with the cooperation of the CUNY 
Computation Center. 
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2. Hilbert Modular Functions. The modular group PSL2(Z) generated by (1.2) is 
generalized to r = PSL2(Z(V 2]), the Hilbert modular group. It is generated on the 
half-planes Im z > 0, Im z' > 0, by 

(2.1a) z z + l, z'z', +, 
(2.1b) z-z + V/2, z'-*z'-V2, 
(2.1c) z -l/z, z' -l/z, 
(2.1d) z -*(1 + V2)2z, z'-* (1 - V2)2z'. 

The last transformation is also unimodular (z -*(1 + V2)z/(-1 + V2)); it in- 
volves use of the unit 1 + V 2. We want to define 1 the field of (rational) Hilbert 
modular functions on r. (For analogies with the classical case governed byj(z), see 
[5].) 

For both theoretical and computational purposes it is easier to first define the 
(rational) graded ring R of even modular forms as those entire functions F(z, z') for 
which 
(2.2) (az + a zf + t ) F(z, z')((yz + 8)(-y'z + af))m 

for even (dimension) m > 0, with z (az + 83)/(yz + 8) in r. (Except for z, z' 
primes (') denote conjugates over Q(V/2).) We restrict R further by the requirement 
of rational coefficients in the Fourier expansion (at the "cusp") in 

(2.3a) q = exp ri(z + z'), 

(2.3b) qo = exp ri(z - z')/IV2. 
(For elements of R with m = 0, we have just the constants Q.) Then 1 is defined as 
the quotient field of R. 

The main requirement [2] is that R = Q[ G2, G4, G6], where Gm are the so-called 
"Eisenstein series", with expansion 

(2.4a) Gm = Am + Bm qbqoasm-(a + bV2), m > 2, 

summed over the range of integers 

(2.4b) b > 0, lal < bV2, 
with ideal divisor function (summed to ignore associates) 

(2.4c) su (a) = [L'I u, ( M) I (a), 

and with Am and Bm chosen for the convenience of integral values, 
(2.4d) A2 = 1, B2 = 48; A4 = 11, B4= 480; A6 = 361, B6 = 1008. 
The function su(a) can easily be evaluated in terms of principal ideal factors of 
(a) = (a + b V2) = (V 2)e2 11 pePpe. 171 rf, with product extended over prime fac- 
tors (p) = pp' for p-+ I (mod 8) and (r) for r ?3 (mod 8) with indicated 
nonnegative exponents. Therefore everything comes from the rational formulas 

(2.4e) gcd(a, b) = 2[e2/2]lU p e. fv rfr, Ia2 - 2b21 - 2e2 H|p ep +gp fI r2fJ 
These lead to 

(2.4f) s(a) = (I + 2u + +2e2U)( + pu + +pep 

x(l + pu + . 
+p(ep+gp)u)fl(I + r2u + * * * +r2fu) 
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It is more convenient to write R = Q[G2, H4, H6] with generators which have 
simpler starting terms (subscripts always denote dimension of forms), 

(2.5a) G2 = 1 + q{48, 144, 48) + q2{(336, 384, 720, 384, 336) + 

(2.5b) H4 = (IIG 2- G4/576 = q{l, -2, 1) + q2{-4, -8, 24, -8, -4) + . 

(2.5c) H6 = (361G' - G6- 50976G2H4/224640 
= q + 2q2{-l, -8, 6, -8, -1) + .... 

The symbol { ) denotes a finite series in q0, 
u 

(2.5d) {au, - , al, ao, a-l, . . ., a = amq 
-u 

Here the symmetry au = a-u (or q0 -> qol, or z -z -* z), is an incidental property 
of R. 

Therefore the (rational) Hilbert modular function field is 

(2.6a) ? = Q(X, Y), 

with two generators given by 

(2.6b) X = X(z, z') = G22/H4, Y = Y(z, z') = G2H4/H6. 

Our problem relates to the functions 

(2.7) X0 = X((2 + V2)z, (2 - V2)z'), Y0 = Y((2 + V2)z, (2 - V2)z'). 

We shall find the equations which X0 and Y0 satisfy over '1; these are the "modular 
equations with factor 2 + -V2 (of norm 2)". 

3. The Modular Equation. We are concerned with three conjugate operations 
under r, 

(3. 1 a) T,(z, z') = ((2 + V2)z, (2 - V2)z'), 
(3.1b) T2(z, z') = ((2 + V2)z/2, (2 - V2)z'/2), 

(3.1c) T3(Z, Z') = ((2 + V2)(z + 1)/2, (2 - V2)(z' + 1)/2). 

Then it can be verified from (2.1) and (2.2) that, for the form F(z, z'), the triple 

(3.2) FP') = 2mF(T1(z, z')), F(2) = F(T2(z, z')), F(3) = F(T3(z, z')) 

is an invariant set under r, so its symmetric functions are again modular forms of 
dimension m times the degree of the symmetric function. Likewise the modular 
function 

(3.3a) W(z, z') = F(z, z')/E(z, z') 

(a ratio of two forms of dimension m) has three conjugates 

(3.3b) W(i) = W(Tj(z, z')) = F(i)/E(), j = 1, 2, 3, 

satisfying a modular equation 

(3.4a) w3 - 3 sym(F, E) W2 + 3 sym(E, F) w - sym(F, F) 
09 

sym(E, E) sym(E, E) sym(E, E) 

where we now define "sym" a modular form of dimension 3m, namely, 

(3.4b) sym(E, F) = (F(')E(2)E(3) + F(2)E(3)E(l) + F(3)E(l)E(2))/2m. 
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The (multiplicative) norm is recognized as a special case, 

(3.4c) norm(E) = sym(E, E)/3 = E(')E (2)E(3)/2m. 

We avail ourselves of integral powers (as well as integral coefficients) by writing 
F1, F2, F3 (subscripts not dimensions!), defined by 

(3.5a) P')= F1/2m, 

(3.5b) F2) = F2 + F3/lq, 
(3.5c) = F2 -F3/lq. 
Now F1, F2, F3 are integral-powered (and F3, for instance, has no constant term). If 
we write 

(3.6) F= qaqbf(a + b v2), 

then, with the change in variables (3.1), 

(3.7a) F1 = , qO2aq bf((2a - b) + (b - a) VA2), 

(3.7b) F2 = qqbf((2a - 2b) + (2b - 2a)V2), 

(3.7c) F3 = qqbf((2a - 2b + 1) + (2b - 2a - 1)v2). 
Here, each sum is, of course, restricted to those a and b which produce arguments 
of f already present in the sum (3.6). Then, 

(3.8a) sym(E, F) = F1(E22 - E2/q) + 2E1(E2F2 -E3F31q) 

(3.8b) norm(E) = E -(E22 - E32/q). 

There is no loss of accuracy in polynomial operations with Fourier coefficients, 
but the transformations (3.1) lead to half-exponents. So it is not trivial to decide 
how many terms are to be used. It turns out in Section 4 that for X = G2 / H4 (and 
Y = G2H4H6) modular forms of dimension 3 * 4 = 12 (and 3 * 6 = 18) are re- 
quired, and these are determined by the Fourier series up to q3 (and q4 respec- 
tively). If we examine the sym( ), we see that in both cases it suffices for the 
modular forms of transformed type F2 and F3 to be known up to q3 in (3.7). This 
degree of accuracy requires 45 coefficients in G2, H4, H6, namely 

a = 0, b = 0 (one coeff.), 
(3.9) 1 < b < 5, lal < b-V2 (43 coeff.), 

a = 6, b = 6 (one coeff.). 

We are omitting a rather tedious hand analysis, one point at a time, to establish 
that the range (3.9) is sufficient. We might just illustrate the fact that the last point, 
a = 6, b = 6, of (3.9) is required in (3.7b) to cover the term qoq3f(-6 + 6V2), 
which is only of order 3 in q. The process uses the unit condition (2.1d), e.g., 
f(-6 + 6 V2) = f((6 + 6 V2)(1 - V 2)2). The problem was set up for 40-digit multi- 
ple precision arithmetic, but the largest coefficient which appeared was of order 
10'5. 

4. Evaluation of Modular Forms. First the bases of the modular forms of 
dimensions 12 and 18 are listed manually by partitioning 12 and 18 into 2, 4, and 6. 
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Then the machine calculates and prints the 45 coefficients in the range (3.9). We 
abbreviate the list to show only the leading terms. 

dimension 12 

G26 = I + 288q{ 1, 3, 1 } + . . . , G24H4 = q{ 1, -2, 1 } + ... 

G2HH6=q 22H42=q)+ 1, -4,6,-4,1q+... 

G2H4H6 = q 2( 1, -2, 1 } + * * *, H62 =q2 + 

H41 = q3{1, -6, 15, -20, 15, -6, 1) + 

dimension 18 

G29 I + 432q{f 1, 39 1 } .. G26H6 = q + . . G27H4 =q{ 1, -29 1 } + . . 

GH2=q2+..., G24H4H6= q2{1,-2,1}+..., 

G 2H 42 q 2(l 1, -49 69 -4, 1 } + ... ., H63 = q3 + . 

G2H4H 2 = q3{ 1, -2, 1 ) + . . ., G22H42H6 = q3{ 1 -4, 6, -4, 1) + ... . 

G2?H4= q3{1, -6, 15, -20, 15, -6, 1) + 

H2H6= q4{1, -6, 15, -20, 15, -6,1+ 1) 

G2H44 = q4{ 1, -8, 28, -56, 70, -56, 28, -8, 1) + .... 

The machine computes the Fourier series of sym( ) and norm( ) for the 
numerators and denominators of X and Y in (2.6b). The output is accurate to q3 
for X and q4 for Y, which is sufficient to verify the following expansions: 

norm(G2) = G3 + 144G2H4 - 1728H6, 

(4.1) norm(H4) =-H6 

norm(H6) = H43(G2H4 + 4H6), 

(note, the multiplicativity, e.g., norm(G2H4) = norm(G2)norm(H4)), 

f sym( G2, H4) = -4GH4 - 207G2H6 - 1152G22H42 - 19008G2H4H6 

(4.2) -62208H62 - 82944H4, 

sym(H4, G22) = 432H62 + 156G2H4H6-G3H6 

f sym(H6, G2H4) = G22H42H6 - 4G2H4 + 48H4216, 

( sym(G2H4, H6) = -5G22H42H6 + 108G2H4H62. 

We finally obtain modular equations of type (3.4a) by division. Thus, in (2.6b) 
and (2.7), X0 and Y0 are determined from X and Y by 

(4.4a) FI(X0, X, Y) = 0, 

(4.4b) 4?( Y09 X, Y) = 0, 

where 

FI(X0, X, Y) = X03 + (432 + 156Y - XY)X2 

(4.4c) + (4xy2 + 207XY + 1152Y2 + 19008Y + 62208 + 82944Y2/X)Xo 

+ (XY + 144Y - 1728)2, 
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2( Y0, X, Y) =Y- (X - 4Y + 48)YO/(Y+4) 

(4.4d) + (-5 Y + 108)XY0/ Y( Y + 4) 

+X(XY + 144Y - 1728)/ y2(y + 4), 
and, in addition, 

(4.4e) F2( Y, Xo, YO) = 0. 

The last equation is valid by the symmetry of (3.1a) and (3.1b). (To see this 
symmetry, note the unit in (2.1d) enables us to rewrite (3.lb) as z(2 + V 2)/2 -+)* 

z(2 + V 2)(1 - V2)2/2 = z/(2 + V2), so T, and T2 effectively cancel.) We need 
(4.4e) because our correspondence (3.1) involves three values of (XO, YO) for each 
(X, Y) and not nine! Thus, if we are given (X, Y), we find three values of YO from 
(4.4b), and then we find one value of XO for each YO from simultaneously solving 
the cubic (4.4a) and the quadratic (4.4e) for XO. (The equation 01(X, XO, YO) = 0 is 
also valid, but unnecessary.) 

5. Iterated Singular Moduli. Given X(zo, z;) and Y(zo, z'), we want to use the 
modular equations to find, iteratively, 

(5.1) IX = X((2 + V2)lzo, (2 - V2)'Zo) 
= Y((2 + V2)lzo, (2 - V2)lz'). 

In principle, these equations 

(5.2a) F2(Y,+ 1, XI, Y,) = O, 

(5.2b) 01(X+11, XI, Y,) = 0, F2( Y1, Xt+1, Y1+1) = 0, 

determine three values of (X,+ 1, Y,+ l) for each (X,, Y,). By using the symmetry of 
(3.1a) and (3.1b) again, we see that one value of (X,+1, Y, +) must be a repetition 
of (X,-1, Y,1-); so iteration leads to only two new (X,+1, Y, +) each time. Thus a 
quadratic relation can be found by removing Y,_ as a possible root of (5.2a). The 
equation now becomes 

(5.3a) y2 Y, Y+((XI - 4Y, + 48)/ (Y, + 4) - Y,_l 
- X,(XI Y, + 144 Y, - 1728)/ Y72( Y, + 4) Y, 1- = O. 

With Y, + known, a rational expression for X, + can be found by combining the 
quadratics b1(X,+1, X,, Y,)/(X,+ I - X,) and 4F2(Y1, X+ 1, Y,+ ) to cancel the 
X,2+1 term. This produces a linear relation 

(5.3b) X,+ = P/Q, 

(5.3c) P = (XI Y, + 144 Y, - 1728)2/X,1 

+ Y, Y,+1(Y,Y,+l + 4Y, + 4Y,+l - 48), 

(5.3d) Q = 288 + 48 Y,-XI Y, + XI - I + YYI +1 + 5Y,Y, +1 1728/Y,+l. 
A convenient way to initiate the procedure is to note that for z = -(2 + V2)/z, 

z' = -(2 - V2)/z', one root of (4.4a, b) must satisfy X = XO, Y = YO. Moreover, 
it is not surprising that we obtain the rational integers 

(5.4) X(iV(2 + v2), iV(2 - v2)) = 576, Y(iV(2 + v2), iV(2 - v2)) = 12 
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(because of a class number argument [4], which we do not give here). The values in 
(5.4) are discovered by a decimal computation using the 45-term expansion of G2, 
H4, and H6, (with an accuracy to 10-7). Of course, we easily verify that 
F1,(576, 576, 12) = 42(12, 576, 12) = 0. 

For reasons which will become clear in the next section (see (6.2)), we adjust our 
notation to define 

(5.5a) XI = X(i(2 + V 2)'+'V (2 + V 2), i(2 - V2)'+'V (2 - V 2)), 

(5.5b) Y' = Y(i(2 + V 2)'+'V (2 + V 2), i(2 - V2)'+'V (2 - V2)). 

Then the values (5.4) enable us to start the iteration (5.3), with the values 

(5.5c) (X-2, Y-2) = (X-, Y1) = (576, 12), 

and to proceed to solve quadratic equations to iterate (X,, Y,), t = 0, 1, 2, .... It 
turns out that a consistent choice of radical would be the sign which maximizes X, 
and Y, each time. The first few are 

(5.6a) X0 = 288(7 + 5V2), Y0 = 12(1 + V2), 

(5.6b) XI = 72(388 + 275V2 + 30(1 + V2)3V (2 + V 2)), 

Y, = 6(2 + 5V2 + 6V(2 + V2)), 

(5.6c) X2 and Y2 involve the radical 2 in addition. 

The exact values are increasingly cumbersome. In fact, (5.6c) comes out of a 
calculation of the discriminant of (5.3a) only. It will prove very fortunate that we 
need only program the iteration (5.3) for arithmetic modulo p. 

6. A Weber-Hecke Type Illustration. We consider the form representing a prime 
7T (of norm p) in Z[ V/21 

(6.1) 7T = t2 + (2 + V2)2Y72 (p = ) 
Thus our considerations are limited to primes p which split in Q(V 2), p-= ?1 
(mod 8). Also, for t > 0, p must also split in Ko = Q(V2, iV(2 + V 2)). We assert 
that if we define X,, Y, as in (5.5), and 

(6.2a) K, = Q( V2, i V(2 + V 2), XI, Y,) = KO(XI, Y,), 
then we obtain, analogously with (1.2), 

(6.2b) {repres. by (6.1)) {p splits in K,}. 

This would illustrate the desired Weber-Hecke theory. 
Summarizing (5.6), we find rational conditions on p 

(6.3a) t = 0, Ko = Q(V2, iV(2 + V2)), p 1, 7 (mod 16), 

'6.3b) t = 1, K1 = KO(i), p 1 (mod 16), 

'6.3c) t = 2, K2 = KI(' ~f)' (ditto) andp = r2 + 32s2. 

We now go back to the computer with primes p -1 (mod 16) and check the 
highest power of t for which (6.1) is possible and compare this value of t with the 
length of the longest chain 

'6.4) (X1, Y1), . . . , (X,, Y,) (mod p). 
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The chain starts with (5.5), and (X0, Y0) exists to begin with. The chain keeps going 
as long as the discriminant of (5.3a) comes out to be a perfect square modulop. We 
therefore have two determinations of t and we find they agree for all p up to 10000, 
(144 values of p with values of t ranging up to 6). The process takes less than a 
minute of Amdahl Computer time. 

The decomposition of p = r7r'= g-2 2g2 was done by trying successive g2 
(knowing they are even). Then T = 2 + (2 + V 2),q was accomplished by recog- 
nizing an "ellipsoid". We write 

(6.6a) X = g1 + g2v2, = xI + x2V2, o10 =YI +Y2V2, 

(6.6b) g, = x, + 2x2 + 4(y, +Y2)2 + 4Y2, 

(6.6c) g2/2 = x,x2 + 2(y, + Y2 y. 

Thus a short search limited by (6.6b) determines t and o and provides the value of 
t for (6.1) from 2' llqolo (= y- - 2y2). 

We conclude with a list of the first cases occurring for each t = 1, . . ., 6. 

t= l,p = 17, 7T = 5 + 2V2 = 12 + 2(2 + V2)12; 

(X0, Y0) -(6, 8), (Xl, Y) _ (4, 1) (mod 17); 
t = 2,p = 113, 7T = 11 + 2V2 = (1 - V2)2 + 22(2 + V2)12; for i = 0, 1, 2 

(Xi, Y,) _ (85, 59), (46, 20), (9, 1) (mod 113); 

t=3,p = 337, X= 25 + 12V2 = (1 + 2V2)2 + 23(2 + V 2)12; for i = 0 ..., 3 

(Xi, Y,) (298, 37), (208, 38), (138, 157), (79, 272) (mod 337); 

t= 4,p = 577, 7= 36 + 16 V2 = 12 + 24(2 + -V2)12; for i = 0 . . ., 4 

(Xi, Y1) -(200, 420), (313, 239), (472, 358), (47, 407), 

(170, 511) (mod 577); 

t=5,p = 2689,7T = 67 + 3OV2 = (1 - V2)2 + 25(2 + V 2)12; fori = 0, ...,5 

(Xi, Y) -(1489, 523), (1467, 2122), (1844, 2539), (2484, 1415), 

(2402, 864), (1468, 2606) (mod 2689); 
t=6,p = 9473, 7 = 131 + 62V2=(1 _- V2)2 + 26(2 + V2)12; for i = 0 ..., 6 

(Xi, Y,) (8752, 7015), (4323, 1866), (5976, 4135), (4105, 4527), 

(1206, 8477), (3180, 2809), (8767, 6548) (mod 9473). 

(It is a strange coincidence that for these first occurrences 7 = 1.) 
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